Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference10 articles.
1. A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications,” J. Funct. Anal., 14, 349–381 (1973).
2. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations (CBMS Regl. Conf. Series Math., Vol. 65), Amer. Math. Soc., Providence, R. I. (1986).
3. A. Ambrosetti and V. C. Zelati, “Multiple homoclinic orbits for a class of conservative systems,” Rend. Semin. Mat. Univ. Padova, 89, 177–194 (1993).
4. Y. H. Ding, “Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems,” Nonlinear Anal.: Theor. Methods Appl., 25, 1095–1113 (1995).
5. W. Omana and M. Willem, “Homoclinic orbits for a class of Hamiltonian systems,” Differ. Integral Equ., 5, 1115–1120 (1992).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献