Author:
Ladonkina M. E.,Nekliudova O. A.,Ostapenko V. V.,Tishkin V. F.
Subject
Computational Mathematics,Modeling and Simulation
Reference25 articles.
1. S. K. Godunov, “A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics,” Sb. Math. 47 (8–9), 357–393 (1959).
2. B. van Leer, “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method,” J. Comput. Phys. 32 (1), 101–136 (1979). https://doi.org/10.1016/0021-9991(79)90145-1
3. A. Harten, “High resolution schemes for hyperbolic conservation laws,” J. Comput. Phys. 49 (3), 357–393 (1983). https://doi.org/10.1016/0021-9991(83)90136-5
4. A. Harten and S. Osher, “Uniformly high-order accurate nonoscillatory schemes. I,” SIAM J. Numer. Anal. 24 (2), 279–309 (1987). https://doi.org/10.1137/0724022
5. H. Nessyahu and E. Tadmor, “Non-oscillatory central differencing for hyperbolic conservation laws,” J. Comput. Phys. 87 (2), 408–463 (1990). https://doi.org/10.1016/0021-9991(90)90260-8