Some Ways of Parallel Implementation of the Conjugate Gradient Method with an Implicit Factorized Preconditioner
-
Published:2024-08
Issue:4
Volume:16
Page:638-653
-
ISSN:2070-0482
-
Container-title:Mathematical Models and Computer Simulations
-
language:en
-
Short-container-title:Math Models Comput Simul
Publisher
Pleiades Publishing Ltd
Reference26 articles.
1. J. A. Meijerink and H. A. van der Vorst, “An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix,” Math. Comput. 31, 148–162 (1977). https://doi.org/10.1090/s0025-5718-1977-0438681-4
2. J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Frontiers in Computer Science (Springer, New York, 1988). https://doi.org/10.1007/978-1-4899-2112-3
3. I. S. Duff and G. A. Meurant, “The effect of ordering on preconditioned conjugate gradients,” BIT 29, 635–657 (1989). https://doi.org/10.1007/bf01932738
4. Sh. Doi, “On parallelism and convergence of incomplete LU factorizations,” Appl. Numer. Math. 7, 417–436 (1991). https://doi.org/10.1016/0168-9274(91)90011-n
5. Y. Notay, “An efficient parallel discrete PDE solver,” Parallel Comput. 21, 1725–1748 (1995). https://doi.org/10.1016/0167-8191(96)80005-6