1. Vanetsev, A.S. and Tretyakov, Yu.D., Microwave-assisted synthesis of individual and multicomponent oxides, Russ. Chem. Rev., 2007, vol. 76, no. 5, pp. 397–413.https://doi.org/10.1070/RC2007v076n05ABEH003650
2. Nikolaenko, I.V., Shtin, A.P., and Shveikin, G.P., Preparation of titanium and zirconium oxides via microwave processing of titanium and zirconium hydroxides, Tezisy dokladov XXII mezhdunarodnoi konferentsii “Vozdeistvie intensivnykh potokov energii na veshchestvo” (XXII Int. Conf. Effect of High-Intensity Energy Fluxes on Matter), Elbrus, 2007, pp. 64–65.
3. Shveikin, G.P. and Nikolaenko, I.V., RF Patent 2337791, 2008.
4. Zhuzhgov, A.V., Krivoruchko, O.P., Larina, T.V., Ishchenko, A.V., and Isupova, L.A., Synthesis of highly dispersed 2D aluminum cobalt oxyhydroxide compounds based on microwave-activation products of crystalline gibbsite, Inorg. Mater., 2019, vol. 55, no. 4, pp. 380–389.https://doi.org/10.1134/S0020168519040162
5. Sorokina, I.D., Dresvyannikov, A.F., and Yusupov, R.A., Mathematical modeling of equilibria in the systems Fe(II), $${\text{SO}}_{{\text{4}}}^{{{\text{2}} - }}$$−H2O−OH– (I); Fe(II), $${\text{SO}}_{{\text{4}}}^{{{\text{2}} - }}$$−H2O−OH−, NH3 (II); and Fe(II)−Al(III)−H2O−OH− (III) for optimizing the synthesis of heteronuclear compounds, Vestn. Kazansk. Tekhnol. Univ., 2008, no. 6, pp. 1–24.