1. Sosso, G.C., Deringer, V.L., Elliot, S.R., and Csanyi, G., Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials, Mol. Simul., 2018, no. 11, pp. 866–880. https://doi.org/10.1080/08927022.2018.1447107
2. Lu, Z., Chen, X., Liu, X., Lin, D., Wu, Y., Zhang, Y., Wang, H., Jiang, S., Li, H., Wang, X., and Lu, Z., Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses, Comput. Mater., 2020, no. 6, pp. 1–9. https://doi.org/10.1038/s41524-020-00460-x
3. Fedorov, V.D., Sakharov, V.V., Baskov, P.B., Provorova, A.M., Churbanov, M.F., Plotnichenko, V.G., Ioakhim, P.Kh., Marsel, P., Kirhof, I., and Kobelka, I., Development of high-purity fluoride glasses for instrumentation technology, Ross. Khim. Zh., 2001, vol. 45, nos. 5–6. pp. 51–57.
4. Aseev, V.A., Moskaleva, K.S., and Klement’eva, A.V., Ion-activated lead fluoride laser glass-ceramics, Nauchno-Tekh. Vestn.
SPbGU ITMO, 2008, vol. 49, no. 4, pp. 221–227.
5. Savikin, P.A., Egorov, A.S., Budruev, A.S., and Grishin, I.A., Ho3+-doped ZrF4-BaF2-BiF3 ceramic 2-μm laser beam visualizer, Inorg., Mater., 2016, vol. 52, no. 3, pp. 309–312. https://doi.org/10.1134/S0020168516030134