Effect of Computational Constraints on Zero-Dimensional Computations for the Nanosecond-Order Ignition Process of the CH4/Air Mixture

Author:

Suzuki M.,Morii Y.,Nakamura H.,Maruta K.

Abstract

Abstract Zero-dimensional computations of nanosecond-order ignition using a nanosecond discharge are performed with two constraints. The effects of these constraints are assessed to study the experimental rapid pressure change properly at the initial stages. The computations are carried out with the following constraints: constant internal energy and volume (U&V) and constant enthalpy and pressure (H&P), revealing differences between the two solutions. As the pressure remains constant under the H&P constraint, the total number density of all species decreases during ignition. In this case, O radicals are less generated and consumed. The progression of all reactions and temperatures increases under the H&P constraint less intensely than under the U&V constraint. Significant differences are found between the results calculated under the U&V and H&P constraints. Therefore, large discrepancies with real phenomena can be caused if the loss due to pressure reduction is not treated well.

Publisher

Pleiades Publishing Ltd

Subject

General Physics and Astronomy,Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3