1. Agrachev, A.A., Quadratic Mappings in Geometric Control Theory, J. Soviet Math., 1990, vol. 51, no. 6, pp. 2667–2734; see also: Itogi Nauki Tekh. Ser. Probl. Geom., vol. 20, Moscow: VINITI, 1988, pp. 111–205.
2. Agrachev, A.A., Feedback-Invariant Optimal Control Theory and Differential Geometry: 2. Jacobi Curves for Singular Extremals, J. Dynam. Control Systems, 1998, vol. 4, no. 4, pp. 583–604.
3. Agrachev, A.A., Barilari, D., and Boscain, U., Introduction to Riemannian and Sub-Riemannian Geometry: Preprint SISSA 09/2012/M, https://webusers.imj-prg.fr/ davide.barilari/Notes.php (2016).
4. Agrachev, A.A. and Gamkrelidze, R. V., Symplectic Geometry for Optimal Control, in Nonlinear Controllability and Optimal Control, H. J. Sussmann (Ed.),Monogr. Textbooks Pure Appl. Math., vol. 133, New York: Dekker, 1990, pp. 263–277.
5. Agrachev, A., Stefani, G., and Zezza, P., Strong Optimality of a Bang-Bang Trajectory, SIAM J. Control Optim., 2002, vol. 41, no. 4, pp. 981–1014.