1. Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, vol. 6: Fluid Mechanics, Oxford: Butterworth-Heinemann, 1987.
2. Trias, F.X., Gorobets, A., Soria, M., and Oliva, A., Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 1011, Part I: Numerical methods and time-averaged flow, Int. J. Heat Mass Trans., 2010, vol. 53, no. 4, pp. 665–673.
3. Garbaruk, A.V., Strelets, M.Kh., and Shur, M.L., Modelirovanie turbulentnosti v raschetakh slozhnykh techenii (Modeling of Turbulence in Complex Flow Calculations), St. Petersburg: Gos. Politekh. Univ., 2012.
4. Trias, F.X., Verstappen, R.W.C.P., Gorobets, A., Soria, M., and Oliva, A., Parameter-free symmetry-preserving regularization modeling of a turbulent differentially heated cavity, Comput. Fluids, 2010, vol. 39, no. 10, pp. 1815–1831.
5. Goloviznin, V.M., Zajtsev, M.A., Karabasov, S.A., and Korotkin, I.A., Novye algoritmy vychislitel’noi gidrodinamiki dlya mnogoprotsessornykh vychislitel’nykh kompleksov (New Algorithms in Computational Fluid Dynamics for Multiprocessor Computing Systems), Moscow: Mosk. Gos. Univ., 2013.