Subject
General Mathematics,Analysis
Reference8 articles.
1. Hukuhara, M., Intégration des applications mesurables dont la
valeur est un compact convexe, Funk. Ekv., 1967,
vol. 10, pp. 205–223.
2. Lakshmikantham, V., Gnana Bhaskar, T., and Vasundhara Devi, J.,
Theory of Set Differential Equations in Metric Spaces,
London: Cambridge Sci. Publ., 2006.
3. Ocheretnyuk, E.V. and Slyn’ko, V.I., Qualitative analysis of solutions of
nonlinear differential equations with the Hukuhara derivative in the space $$\mathrm {conv}\thinspace
\mathbb {R}^{2}$$, Differ. Equations, 2015, vol. 51, no. 8,
pp. 998–1013.
4. Atamas, I.V. and Slyn’ko, V.I., Liouville formula for some classes of
differential equations with the Hukuhara derivative, Differ.
Equations, 2019, vol. 55, no. 11, pp. 1407–1419.
5. Voidelevich, A.S., Time-invariant polyhedron-preserving linear differential
equations with the Hukuhara derivative, Differ.
Equations, 2020, vol. 56, no. 12, pp. 1664–1667.