1. Fedotov, I., Marais, J., Shatalov, M., and Tenkam, H.M., Hyperbolic models arising
in the theory of longitudinal vibration of elastic bars, Aust. J. Math.
Anal. Appl., 2011, vol. 7, no. 2, pp. 1–18.
2. Abdulazeez, S.T. and Modanli, M., Solutions of fractional order pseudo-hyperbolic
telegraph partial differential equations using finite difference method,
Alexandria Eng. J., 2022, vol. 61, no. 12,
pp. 12443–12451.
3. Abdulazeez, S.T., Modanli, M., and Husien, A.M., Numerical scheme methods for
solving nonlinear pseudo-hyperbolic partial differential equations, J.
Appl. Math. Comput. Mech., 2022, vol. 4, no. 21,
pp. 5–15.
4. Zhao, Z. and Li, H., A continuous Galerkin method for pseudo-hyperbolic equations
with variable coefficients, J. Math. Anal.
Appl., 2019, vol. 473, no. 2, pp. 1053–1072.
5. Evans, L.C., Partial Differential Equations,
Berkeley: Am. Math. Soc., 2010. Translated under the title: Uravneniya s
chastnymi proizvodnymi , Novosibirsk: Tamara Rozhkovskaya, 2003.