Author:
Belov A. A.,Kalitkin N. N.
Subject
General Mathematics,Analysis
Reference25 articles.
1. Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., and Mikhailov, A.P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh
uravnenii (Blow-Up Modes in Problems for Quasilinear Parabolic Equations),
Moscow: Nauka, 1987.
2. Berger, M. and Kohn, R.V., A rescaling algorithm for the numerical
calculation of blowing-up solutions, Commun. Pure Appl.
Math., 1988, vol. 41, no. 6, pp. 841–863.
3. Huang, W., Ren, Y., and Russell, R.D., Moving mesh methods based on
moving mesh partial differential equations, J. Comput.
Phys., 1994, vol. 113, pp. 279–290.
4. Nakagawa, T., Blowing up of a finite difference solution to $$u_t=u_{xx}+u^2
$$, Appl. Math.
Optim., 1976, vol. 2, pp. 337–350.
5. McLaughlin, D.W., Papanicolaou, G.C., Sulem, C., and Sulem, P.L., Focusing
singularity of the cubic Schrödinger equation, Phys. Rev.
A, 1986, vol. 34, pp. 1200–1210.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Numerical integration of the Cauchy problem with non-singular special points;Discrete and Continuous Models and Applied Computational Science;2023-09-12