Author:
Petrushov A. A.,Krasnopolsky B. I.
Reference23 articles.
1. 1. S. Bhowmick, V. Eijkhout, Y. Freund, E. Fuentes, and D. E. Keyes, ‘‘Application of machine learning in selecting sparse linear solvers,’’ (2006). www.icl.utk.edu/sites/icl/files/publications/2006/icl-utk-287-2006.pdf. Accessed 2023.
2. E. Jessup, P. Motter, B. Norris, and K. Sood, ‘‘Performance-based numerical solver selection in the Lighthouse framework,’’ SIAM J. Sci. Comput. 38, S750–S771 (2016).
3. E. Kuefler and T.-Y. Chen, ‘‘On using reinforcement learning to solve sparse linear systems,’’ Lect. Notes Comput. Sci. 5101, 955–964 (2008).
4. J.-S. Yeom, J. J. Thiagarajan, A. Bhatele, G. Bronevetsky, and T. Kolev, ‘‘Data-driven performance modeling of linear solvers for sparse matrices,’’ in PMBS ’16: Proceedings of the 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computing Systems (2016), pp. 32–42.
5. T. George, A. Gupta, and V. Sarin, ‘‘A recommendation system for preconditioned iterative solvers,’’ in Proceedings of the 2008 8th IEEE International Conference on Data Mining (2008), pp. 803–808.