Subject
Computer Networks and Communications,Computer Science Applications,Information Systems
Reference15 articles.
1. Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O., Understanding Deep Learning (Still) Requires Rethinking Generalization, Commun. ACM, 2021, vol. 64, no. 3, pp. 107–115. https://doi.org/10.1145/3446776
2. Belkin, M., Fit without Fear: Remarkable Mathematical Phenomena of Deep Learning through the Prism of Interpolation, Acta Numer., 2021, vol. 30, pp. 203–248. https://doi.org/10.1017/S0962492921000039
3. Belkin, M., Hsu, D., and Xu, J., Two Models of Double Descent for Weak Features, SIAM J. Math. Data Sci., 2020, vol. 2, no. 4, pp. 1167–1180. https://doi.org/10.1137/20M1336072
4. Dar, Y., Muthukumar, V., and Baraniuk, R.G., A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning, https://arxiv.org/abs/2109.02355 [stat.ML], 2021.
5. Dobrushin, R.L., A Statistical Problem Arising in the Theory of Detection of Signals in the Presence of Noise in a Multi-Channel System and Leading to Stable Distribution, Teor. Veroyatnost. i Primenen., 1958, vol. 3, no. 2, pp. 173–185 [Theory Probab. Appl. (Engl. Transl.), 1958, vol. 3, no. 2, pp. 161–173]. https://doi.org/10.1137/1103015