1. Nechaev, A.A., Kerdock Code in a Cyclic Form, Diskret. Mat., 1989, vol. 1, no. 4, pp. 123–139 [Discrete Math. Appl. (Engl. Transl.), 1991, vol. 1, no. 4, pp. 365–384].
2. Kuz’min, A.S. and Nechaev, A.A., Construction of Noise-Resistant Codes by Means of Linear Recurrences over Galois Rings, Uspekhi Mat. Nauk, 1992, vol. 47, no. 5, pp. 183–184 [Russian Math. Surveys (Engl. Transl.), 1992, vol. 47, no. 5, pp. 189–190].
3. Hammons, A.R., Jr., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., and Solé, P., The ℤ4-Linearity of Kerdock, Preparata, Goethals, and Related Codes, IEEE Trans. Inform. Theory, 1994, vol. 40, no. 2, pp. 301–319.
4. Nechaev, A.A. and Kuz’min, A.S., ℤ 4 n -Linearity, Two Approaches, in Proc. 5th Int. Workshop on Algebraic and Combinatorial Coding Theory, Sozopol, Bulgary, 1996, pp. 212–215.
5. Pujol, J. and Rifà, J., Additive Reed-Muller Codes, in Proc. 1997 IEEE Int. Symp. on Information Theory, Ulm, Germany, 1997, p. 508.