1. Levenshtein, V.I., Binary Codes Capable of Correcting Deletions, Insertions, and Reversals, Dokl. Akad. Nauk SSSR, 1965, vol. 163, no. 4, pp. 845–848 [Soviet Physics Dokl. (Engl. Transl.), 1966, vol. 10, no. 8, pp. 707–710]. http://mi.mathnet.ru/eng/dan31411
2. Varshamov, R.R. and Tenengol’ts, G.M., A Code Which Corrects Single Asymmetric Errors, Avtomat. i Telemekh., 1965, vol. 26, no. 2, pp. 288–292. http://mi.mathnet.ru/eng/at11293
3. Cheraghchi, M. and Ribeiro, J., An Overview of Capacity Results for Synchronization Channels, IEEE Trans. Inform. Theory, 2020, vol. 67, no. 6, pp. 3207–3232. https://doi.org/10.1109/TIT.2020.2997329
4. Schulman, L.J. and Zuckerman, D., Asymptotically Good Codes Correcting Insertions, Deletions, and Transpositions, IEEE Trans. Inform. Theory, 1999, vol. 45, no. 7, pp. 2552–2557. https://doi.org/10.1109/18.796406
5. Bukh, B. and Guruswami, V., An Improved Bound on the Fraction of Correctable Deletions, in Proc. 27th Annu. ACM–SIAM Symp. on Discrete Algorithms (SODA’2016), Arlington, VA, USA, Jan. 10–12, 2016, pp. 1893–1901. https://doi.org/10.1137/1.9781611974331.ch133