Parametrization of Optimal Anisotropic Controllers
-
Published:2023-10
Issue:10
Volume:84
Page:1055-1064
-
ISSN:0005-1179
-
Container-title:Automation and Remote Control
-
language:en
-
Short-container-title:Autom Remote Control
Publisher
Pleiades Publishing Ltd
Reference13 articles.
1. Basile, G. and Marro, G., Controlled and conditioned invariant subspaces in linear system theory, J. Optim. Theory Appl., 1969, vol. 3, pp. 306–315. https://doi.org/10.1007/BF0093137010.1007/BF00931370 2. Chen, B.M., Saberi, A., and Shamash, Y., Necessary and sufficient conditions under which a discrete time H
2-optimal control problem has a unique solution, Proc. 32nd IEEE Conf. Decision and Control, 1993, vol. 1, pp. 805–810. https://doi.org/10.1109/CDC.1993.325038 3. Chen, B.M., Saberi, A., Shamash, Y., and Sannuti, P., Construction and parameterisation of all static and dynamic H
2-optimal state feedback solutions for discrete time systems, Proc. 32nd IEEE Conf. Decision and Control, 1993, vol. 1, pp. 126–131. https://doi.org/10.1109/CDC.1993.325177 4. Diamond, P., Kloeden, P., and Vladimirov, I., Mean anisotropy of homogeneous Gaussian random fields and anisotropic norms of linear translation-invariant operators on multidimensional integer lattices, J. Appl. Math. Stochast. Anal., 2003, vol. 16, no. 3, pp. 209–231. https://doi.org/10.1155/S1048953303000169 5. Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., State-space solutions to standard H
2 and H
∞ control problems, IEEE Transactions on Automatic Control, 1989, vol. 34, pp. 831–847. https://doi.org/10.1109/9.29425
|
|