1. Grigoriev, I.S. and Grigoriev, K.G., Conditions of the Maximum Principle in the Problem of Optimal Control over an Aggregate of Dynamic Systems and Their Application to Solution of the Problems of Optimal Control of Spacecraft Motion, Cosmic Research, 2003, vol. 41, no. 3, pp. 285–309.
2. Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal control), Moscow: Nauka, 1979.
3. Aleksandrov, V.V., Bakhvalov, N.S., Grigoriev, K.G., et al., Praktikum po chislennym metodam v zadachakh optimal’nogo upravleniya (A Practical Course on Numerical Methods in Optimal Control Problems), Moscow: Mosk. Gos. Univ., 1988.
4. Grigoriev, I.S., Grigoriev, K.G., and Zapletin, M.P., Praktikum po chislennym metodam v zadachakh optimal’nogo upravleniya. Dopolnenie I (A Practical Course on Numerical Methods in Optimal Control Problems. Supplement I), Moscow: Mosk. Gos. Univ., 2007.
5. Grigoriev, I.S., Metodicheskoe posobie po chislennym metodam resheniya kraevykh zadach printsipa maksimuma v zadachakh optimal’nogo upravleniya (A Practical Course in Numerical Methods for Solving Boundary Problems with the Maximum Principle in Optimal Control Problems), Moscow: Mosk. Gos. Univ., 2005.