Author:
Klimchenko V. V.,Snegirev O. Yu.,Shevlyagina S. A.,Torgashov A. Yu.
Subject
Control and Systems Engineering,Electrical and Electronic Engineering
Reference18 articles.
1. Bakhtadze, N.N., Virtual analyzers: Identification approach, Autom. Remote Control, 2004, vol. 65, pp. 1691–1709.
https://doi.org/10.1023/B:AURC.0000047885.52816.c7
2. Lototskii, V.A., Chadeev, V.M., Maksimov, E.A., and Bakhtadze, N.N.,
Prospects for the use of soft sensors in production control systems, Avtom. Prom-sti, 2004, no. 5, pp. 23–29.
3. Udugama, I.A., Camps, M.A., Taube, M.A., Thawita, C.,
Anantpinijwatna, A., Mansouri, S.S., and Yu, W., Novel soft sensor for measuring and controlling
product recovery in a high-purity, multicomponent, side-draw distillation column, Ind. Eng. Chem. Res., 2019, vol. 58, no. 43, pp. 20026–20035.
https://doi.org/10.1021/acs.iecr.9b04594
4. Bo, C.M., Li, J., Sun, C.Y., and Wang, Y.R., The application of neural
network soft sensor technology to an advanced control system of distillation operation, Proc. Int. Joint Conf. Neural Networks (Portland, OR, 2003),
vol. 2, pp. 1054–1058. https://doi.org/10.1109/IJCNN.2003.1223836
5. Vallejo, M., de la Espriella, C., Gуmez-Santamaria, J., Ramirez-Barrera, A.F.,
and Delgado-Trejos, E., Soft metrology based on machine learning: A review, Meas. Sci. Technol., 2019, vol. 31, no. 3, p. 032001. https://doi.org/10.1088/1361-6501/ab4b39