Author:
Ustinov V. V.,Yasyulevich I. A.,Bebenin N. G.
Abstract
Abstract
A theory of spin and charge transport in bounded metallic magnets has been constructed, which takes into account the effects of spin-orbit scattering of conduction electrons by crystal lattice defects. The theory can be used to describe the spin Hall effect and the anomalous Hall effect and can serve as a basis for describing the phenomena of spin-orbitronics. Phenomenological boundary conditions for the charge and spin fluxes at the interface between two different metals have been formulated, on the basis of which the injection of a pure spin current into a helimagnet, which arises in a normal metal as a manifestation of the spin Hall effect, is described. The existence of an “effect of chiral polarization of a pure spin current” is predicted, which consists in the appearance in a helimagnet of a longitudinally polarized pure spin current and a longitudinal component of the nonequilibrium electron magnetization, depending on the chirality of the helimagnet helix, upon injection of a transversely polarized spin current from a normal metal.
Subject
Materials Chemistry,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献