Author:
Kamerdzhiev S. P.,Shitov M. I.
Abstract
Abstract
A microscopic model for taking into account quasiparticle–phonon interaction in magic nuclei is considered within nuclear quantum many-body theory. This model is of interest for constructing a microscopic theory of pygmy and giant multipole resonances—first of all, a description of their fine structure. This article reports on a continuation and development of our earlier study [1]. Basic physics results of that study are confirmed here, and new results are obtained: (i) exact (not approximate, as in [1]) expressions for the first and second variations of the vertex in the phonon field are found and employed; (ii) a new equation involving, in addition to the known effective interaction, the total amplitude for particle–hole interaction is derived for the vertex, which is the main ingredient in the theory of finite Fermi systems; (iii) the required two-phonon configurations are obtained owing to the last result. The new equation for the vertex now contains complex configurations such as $$1p1h\otimes\textrm{phonon}$$ and two-phonon ones, along with numerous ground-state correlations.
Subject
Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献