Subject
Mathematics (miscellaneous)
Reference12 articles.
1. Arnaud, M.-C., Le “closing lemma” en topologie C 1, Mém. Soc. Math. Fr. (N. S.), 1998, vol. 74, pp. 1–120.
2. Banks, J., Brooks, J., Cairns, G., Davis, G., and Stacey, P., On Devaney’s Definition of Chaos, Amer. Math. Monthly, 1992, vol. 99, no. 4, pp. 332–334.
3. Benci, V. and Giannoni, F., Periodic Bounce Trajectories with a Low Number of Bounce Points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1989, vol. 6, no. 1, pp. 73–93.
4. Boshernitzan, M., Galperin, G., Kruger, T., and Troubetzkoy, S., Periodic Billiard Orbits Are Dense in Rational Polygons, Trans. Amer. Math. Soc., 1998, vol. 350, no. 9, pp. 3523–3535.
5. CBMS Regional Conference Series in Mathematics;C Conley,1978
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The closing lemma and the planar general density theorem for Sobolev maps;Proceedings of the American Mathematical Society;2021-02-12
2. On a conjugacy problem in billiard dynamics;Proceedings of the Steklov Institute of Mathematics;2015-05