1. Bajaj, A., Time Series Prediction: How is it different from other machine learning?, 2023. https://neptune.ai/ blog/time-series-prediction-vs-machine-learning.
2. Belov, A.V. and Gushchina, R.T., Index of the long-term influence of sporadic solar activity on cosmic ray modulation, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 1, pp. 1–8. https://doi.org/10.1134/S0016793218010036.
3. Belov, A.V., Gushchina, R.T., Obridko, V.N., Shel’ting, B.D., and Yanke, V.G., Prediction and epignosis of long-period variations in cosmic rays on the basis of different solar activity indices, Bull. Russ. Acad. Sci.: Phys., 2005, vol. 69, no. 6, pp. 890–892.
4. Belov, A.V., Gushchina, R.T., and Yanke, V.G., Cosmic ray variations in solar activity cycles 23–24 according to data from the global network of cosmic ray stations, in Tr. konf. “Astronomiya-2018” (Proceedings of the Conference “Astronomy-2018”), Moscow: GAISh MGU, 2018, vol. 2, pp. 27–30. https://doi.org/10.31361/eaas.2018-2.006.
5. Cliver, E.W. and von Steiger, R., Minimal magnetic states of the sun and the solar wind: Implications for the origin of the slow solar wind, Space Sci. Rev., 2017, vol. 210, pp. 227–247. https://doi.org/10.1007/s11214-015-0224-1