No-Reference Image Quality Assessment Based on Machine Learning and Outlier Entropy Samples
-
Published:2024-06
Issue:2
Volume:34
Page:275-287
-
ISSN:1054-6618
-
Container-title:Pattern Recognition and Image Analysis
-
language:en
-
Short-container-title:Pattern Recognit. Image Anal.
Author:
Gavrovska AnaORCID, Samčović AndrejaORCID, Dujković DragiORCID
Publisher
Pleiades Publishing Ltd
Reference57 articles.
1. D. Chen, Yi. Wang, and W. Gao, “No-reference image quality assessment: An attention driven approach,” IEEE Trans. Image Process. 29, 6496–6506 (2020). https://doi.org/10.1109/tip.2020.2990342 2. X. Chen, Q. Zhang, M. Lin, G. Yang, and C. He, “No-reference color image quality assessment: from entropy to perceptual quality,” EURASIP J. Image Video Process. 2019, 77 (2019). https://doi.org/10.1186/s13640-019-0479-7 3. K. De and V. Masilamani, “A no-reference image quality measure for blurred and compressed images using sparsity features,” Cognit. Comput. 10, 980–990 (2018). https://doi.org/10.1007/s12559-018-9562-0 4. A. Delgado-Bonal and A. Marshak, “Approximate entropy and sample entropy: A comprehensive tutorial,” Entropy 21, 541 (2019). https://doi.org/10.3390/e21060541 5. Q. Gao, S. Li, M. Zhu, D. Li, Z. Bian, Q. Lv, D. Zeng, and J. Ma, “Combined global and local information for blind CT image quality assessment via deep learning,” Proc. SPIE 11316, 1131615 (2020). https://doi.org/10.1117/12.2548953
|
|