An Efficient Logarithmic Barrier Method without Line Search for Convex Quadratic Programming
-
Published:2022-06
Issue:2
Volume:15
Page:156-169
-
ISSN:1995-4239
-
Container-title:Numerical Analysis and Applications
-
language:en
-
Short-container-title:Numer. Analys. Appl.
Author:
Chaghoub S.,Benterki D.
Publisher
Pleiades Publishing Ltd
Subject
Numerical Analysis
Reference24 articles.
1. Bai, Y., El Ghami, M., and Roos, C., A Comparative Study of Kernel Functions for Primal-Dual Interior Point Algorithms in Linear Optimization, SIAM J. Optim., 2005, vol. 15, no. 1, pp. 101–128. 2. Belabbaci, A., Djebbar, B., and Mokhtari, A., Optimization of a Strictly Concave Quadratic Form, Proc. 4th Int. Conf. on Applied Operational Research, Bangkok, Thailand, 2012, pp. 16–20. 3. Belabbaci, A. and Djebbar, B., Algorithm and Separating Method for the Optimization of Quadratic Functions, Int. J. Comput. Sci. Math., 2017, vol. 8, no. 2, pp. 183–192. 4. Ben-Daya, M. and Al-Sultan, K.S., A New Penalty Function Algorithm for Convex Quadratic Programming, Eur. J. Operat. Res., 1997, vol. 101, no. 1, pp. 155–163. 5. Benterki, D., Crouzeix, J.P., and Merikhi, B., A Numerical Feasible Interior Point Method for Linear Semidefinite Programs, RAIRO-Operations Res., 2007, vol. 41, pp. 49–59.
|
|