Effect of Shear Loading Conditions on the Measured Strength of Ice Adhesion to Superhydrophobic Surfaces

Author:

Emelyanenko K. A.,Emelyanenko A. M.,Boinovich L. B.

Abstract

Abstract Despite the significant interest of researchers, icing of aircraft, vehicles, ships, and equipment of offshore oil structures remains to be an urgent problem. This paper considers the factors that promote a decrease in the strength of the contact between ice and surfaces under an applied shear load. The main attention is focused on studying the influence of the rate of shear loading on the fracture of the interfacial contact between ice and superhydrophobic coatings. The strength of the adhesive contact under the conditions of controlled variations in the applied load is measured using a technique based on the detachment of ice from a surface under the influence of centrifugal force. The study is carried out for large ensembles of samples in the temperature range from −5 to −20°C, thereby making it possible to evaluate the influence of the quasi-liquid layer and the Rehbinder effect on a decrease in the shear adhesive strength. The results obtained indicate that the contact between ice and a superhydrophobic coating is fractured through a mixed viscous–brittle mechanism. In this case, a decrease in temperature or an increase in the loading rate causes a transition from the viscous to the brittle fracture. These results indicate a potential acceleration of ice shedding with an increase in the growth rate of the shear stress.

Publisher

Pleiades Publishing Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3