Two-Sided Estimates of the Norm for a Class of Matrix Operators
-
Published:2022-02
Issue:1
Volume:32
Page:29-34
-
ISSN:1055-1344
-
Container-title:Siberian Advances in Mathematics
-
language:en
-
Short-container-title:Sib. Adv. Math.
Publisher
Pleiades Publishing Ltd
Subject
General Mathematics
Reference10 articles.
1. G. Bennett, “Some elementary inequalities,” Quart. J. Math. Oxford II Ser.
38, 401 (1987).
2. G. Bennett, “Some elementary inequalities. II,” Quart. J. Math. Oxford
II Ser. 39, 385 (1988).
3. G. Bennett, “Some elementary inequalities. III,” Quart. J. Math. Oxford
II Ser. 42, 149 (1991).
4. M. Sh. Braverman and V. D. Stepanov, “On the discrete Hardy inequality,”
Bull. London Math. Soc. 26, 283
(1994).
5. A. Kalybay, R. Oinarov, and A. Temirkhanova, “Boundedness of
$$n
$$-multiple discrete Hardy operators with weights for
$$1 < q < p <
\infty $$, J. Funct. Spaces Appl., Art.
ID 121767 (2013).