On Alternating Semigroups of Endomorphisms of a
Groupoid
-
Published:2024-05-31
Issue:2
Volume:34
Page:105-115
-
ISSN:1055-1344
-
Container-title:Siberian Advances in Mathematics
-
language:en
-
Short-container-title:Sib. Adv. Math.
Publisher
Pleiades Publishing Ltd
Reference18 articles.
1. E. I.. Bunina and P. P. Semenov, “Automorphisms of the semigroup of
invertible matrices with nonnegative elements over commutative partially ordered rings,” Fundam.
Prikl. Mat. 14, no. 2, 69 (2008) [J. Math. Sci. 162, 633 (2009)].
2. E. I. Bunina and K. Sosov, “Endomorphisms of the semigroup of nonnegative
invertible matrices of order two over commutative ordered rings,” Fundam. Prikl. Mat. 23, no. 4, 39 (2021) [J. Math. Sci. 269, 469 (2023)].
3. D. Hobby, D. Silberger, and S. Silberger, “Automorphism groups of finite
groupoids,” Algebra Univers. 64, 117
(2010).
4. A. P. Il’inykh, “Classification of finite groupoids with $$2
$$-transitive automorphism groups,” Mat. Sb.
185, no. 6, 51 (1994) [Sb. Math. 82, 175 (1995)].
5. A. P. Il’inykh, “Groupoids of order $$q(q\pm 1)/2
$$, $$q=2r
$$, with automorphism group isomorphic to
$$SL(2,q)
$$,” Sib. Matem. Zh. 36, 1336 (1995) [Sib. Math. J. 36, 1159 (1995)].