1. A. Andrusyk, “Infinite series representations for Bessel functions of the first kind of integer order,” Tech. Rep. (Inst. for Condensed Matter Physics, Lviv, Ukraine, 2012). arXiv:1210.2109
2. N. M. Blachman and S. H. Mousavinezhad, “Trigonometric approximations for Bessel functions,” IEEE Trans. Aerosp. Electron. Syst. 22, 2–7 (1986).
3. A. Cuyt, V. Brevik Petersen, B. Verdonk, H. Waadeland, and W. B. Jones, Handbook of Continued Fractions for Special Functions (Springer, Berlin, 2008).
4. Sparse trigonometric and generalized eigenvectors. Under thec spectral analysis;A. Cuyt,2019
5. M. Giesbrecht, G. Labahn, and W. Lee, “Symbolic-numeric sparse polynomial interpolation in Chebyshev basis and trigonometric interpolation,” in Proceedings of the Workshop on Computer Algebra in Scientific Computation (CASC) (2004), pp. 195–204.