1. Barkhatov, N.A. and Revunov, S.E., Iskusstvennye neironnye seti v zadachakh solnechno–zemnoi fiziki (Artificial Neural Networks in Problems of Solar–Terrestrial Physics), Nizhny Novgorod: Povolzh’e, 2010.
2. Barkhatov, N.A., Korolev, A.V., Ponomarev, S.M., and Sakharov, S.Yu., Long-term forecasting of solar activity indices using neural networks, Radiophys. Quantum Electron., 2001, vol. 44, no. 9, pp. 742–749.
3. Barkhatov, N.A., Levitin, A.E., and Sakharov, S.Yu., The method of artificial neuron networks as a procedure for reconstructing gaps in records of individual magnetic observatories from the data of other stations, Geomagn. Aeron. (Engl. Transl.), 2002, vol. 42, no. 2, pp. 184–186.
4. Barkhatov, N.A., Revunov, S.E., and Uryadov, V.P., Forecasting of the critical frequency of the ionosphere F2 layer by the method of artificial neural networks, Int. J. Geomagn. Aeron., 2004, GI2010. doi 10.1029/2004GI000065
5. Barkhatov, N.A., Vorobjev, V.G., Revunov, S.E., Yagodkina, O.I., and Vinogradov, A.B., Demonstration of the reflection of dynamics of solar wind parameters during the formation of substorm activity using an intelligent tool, in Proc. of the 39th Annual Seminar “Physics of Auroral Phenomena”, Apatity: PGI, 2016, pp. 27–30.