Abstract
Abstract
A mathematical generalization is given of the famous Bell inequality, which arose in connection with the analysis of the classical Einstein–Podolsky–Rosen paradox.
Reference22 articles.
1. A. Aspect, “Bell’s theorem: The naive view of an experimentalist,” in Quantum [Un]speakables: From Bell to Quantum Information (Springer, Berlin, 2002), pp. 119–153.
2. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1 (3), 195–200 (1964).
3. C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59 (2), 1070–1091 (1999).
4. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23 (15), 880–884 (1969); “Erratum,” Phys. Rev. Lett. 24 (10), 549 (1970).
5. P. A. M. Dirac, Directions in Physics: Lectures delivered during a visit to Australia and New Zealand, 1975 (J. Wiley & Sons, New York, 1978).