1. A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, “A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem,” Byul. Mosk. Gos. Univ., Mat. Mekh. 1(6), 1–26 (1937); French transl.: A. Kolmogoroff, I. Pretrovsky, and N. Piscounoff, “ Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,” Bull. Univ. État Moscou, Math. Méc. 1 (6), 1–25 (1937).
2. S. A. Molchanov and E. B. Yarovaya, “Branching processes with lattice spatial dynamics and a finite set of particle generation centers,” Dokl. Akad. Nauk 446(3), 259–262 (2012) [Dokl. Math. 86 (2), 638–641 (2012)].
3. S. A. Molchanov and E. B. Yarovaya, “Limit theorems for the Green function of the lattice Laplacian under large deviations of the random walk,” Izv. Ross. Akad. Nauk, Ser. Mat. 76(6), 123–152 (2012) [Izv. Math. 76, 1190–1217 (2012)].
4. S. A. Molchanov and E. B. Yarovaya, “Population structure inside the propagation front of a branching random walk with finitely many centers of particle generation,” Dokl. Akad. Nauk 447(3), 265–268 (2012) [Dokl. Math. 86 (3), 787–790 (2012)].
5. B. A. Sevastyanov, “Branching stochastic processes for particles diffusing in a bounded domain with absorbing boundaries,” Teor. Veroyatn. Primen. 3(2), 121–136 (1958) [Theory Probab. Appl. 3, 111–126 (1958)].