15N Natural Abundance of Soil Microbial Biomass in Alpine and Tundra Ecosystems

Author:

Makarov M. I.,Kadulin M. S.,Malysheva T. I.

Abstract

Abstract Isotopic composition of nitrogen in soil microbial biomass (δ15Nmicr) is connected with the transformation of nitrogen compounds and with the balance of carbon and nitrogen availability for microorganisms. We have studied the dependence of δ15Nmicr on nitrogen isotopic composition in the substrate (δ15N of total and extractable nitrogen), as well as the dependence of δ15Nmicr and 15N-enrichment of microbial biomass (Δ15Nmicr = δ15Nmicr – δ15Nsubstr) on nitrogen availability parameters (the C/N ratio in soil, the N-mineralization activity, the content of extractable nitrogen, and the nitrogen use efficiency) in soils of four alpine ecosystems in the North Caucasus and four tundra ecosystems in the Khibiny Mountains. It has been shown that δ15Nmiсr varies from –0.2 to +8.4‰ and may be characterized by both 15N-enrichment and depletion (negative Δ15Nmiсr values) relative to the total and extractable soil nitrogen. As a rule, Δ15Nmicr is 1.5–3.1‰ relative to 15Ntotal and 0.6–4.8‰ relative to 15Nextr. However, under the most N-deficiency conditions in soils of mountain tundra lichen and shrub heaths, Nmicr does not accumulate an increased amount of 15N. We have not revealed a close correlation of δ15Nmicr and Δ15Nmicr with the C/N ratio. The accumulation of 15N in microbial biomass is much stronger related to N-mineralization (positively) and the nitrogen use efficiency (negatively). This testifies to the important role of microbial nitrogen dissimilation in controlling the isotopic composition of soil microbial biomass nitrogen.

Publisher

Pleiades Publishing Ltd

Subject

Earth-Surface Processes,Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mineral-associated soil organic matter: characteristics and behavior under diagenesis;Почвы и окружающая среда;2021-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3