Group Structure of the $$p$$-Adic Ball and Dynamical System of Isometry on a Sphere
-
Published:2024-05-06
Issue:2
Volume:16
Page:128-135
-
ISSN:2070-0466
-
Container-title:p-Adic Numbers, Ultrametric Analysis and Applications
-
language:en
-
Short-container-title:P-Adic Num Ultrametr Anal Appl
Publisher
Pleiades Publishing Ltd
Reference32 articles.
1. S. Albeverio, U. A. Rozikov and I. A. Sattarov, “$$p$$-Adic $$(2,1)$$-rational dynamical systems,” J. Math. Anal. Appl. 398 (2), 553–566 (2013).
2. AIP Conf. Proc.;V. S. Anashin,2006
3. de Gruyter Expositions in Mathematics;V. S. Anashin,2009
4. V. S. Anashin, “Non-Archimedean ergodic theory and pseudorandom generators,” The Computer J. 53 (4), 370–392 (2010).
5. V. S. Anashin, A. Yu. Khrennikov and E. I. Yurova, “Characterization of ergodicity of $$p$$-adic dynamical systems by using van der Put basis,” Doklady Math. 83 (3), 306–308 (2011).