Entropy and recurrent dimensions of discrete dynamical systems given by p-adic expansions
-
Published:2015-04
Issue:2
Volume:7
Page:157-167
-
ISSN:2070-0466
-
Container-title:P-Adic Numbers, Ultrametric Analysis, and Applications
-
language:en
-
Short-container-title:P-Adic Num Ultrametr Anal Appl
Author:
Inoue H.,Naito K.
Publisher
Pleiades Publishing Ltd
Subject
General Mathematics
Reference6 articles.
1. B. Adamczewski and Y. Bugeaud, “On the complexity of algebraic numbers I. Expansions in integer bases,” Annals Math. 165, 547–565 (2007).
2. M. Morse and G. A. Hedlund, “Symbolic dynamics II-Sturmian trajectories,” Amer. J. Math. 62, 1–42 (1940).
3. K. Naito, “Dimension estimate of almost periodic attractors by simultaneous Diophantine approximation,” J. Diff. Equations 141, 179–200 (1997).
4. K. Naito, “Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations,” Trans. Amer. Math. Soc. 354(3), 1137–1151 (2002).
5. K. Naito, “Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations II: Gaps of dimensions and Diophantine conditions,” Discrete Cont. Dyn. Syst. 11, 449–488 (2004).