The KNTZ trick from arborescent calculus and the structure of the differential expansion
Author:
Publisher
Pleiades Publishing Ltd
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Link
https://link.springer.com/content/pdf/10.1134/S0040577920080036.pdf
Reference42 articles.
1. N. M. Dunfield, S. Gukov, and J. Rasmussen, “The superpolynomial for knot homologies,” Exp. Math., 15, 129–159 (2006); arXiv:math/0505662v2 (2005).
2. H. Itoyama, A. Mironov, A. Morozov, and An. Morozov, “HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations,” JHEP, 1207, 131 (2012); arXiv:1203.5978v5 [hep-th] (2012).
3. A. Mironov, A. Morozov, and An. Morozov, “Evolution method and ‘differential hierarchy’ of colored knot polynomials,” AIP Conf. Proc., 1562, 123–155 (2013); arXiv:1306.3197v1 [hep-th] (2013); “On colored HOMFLY polynomials for twist knots,” Modern Phys. Lett. A, 29, 1450183 (2014); arXiv:1408.3076v2 [hep-th] (2014).
4. S. B. Arthamonov, A. D. Mironov, and A. Yu. Morozov, “Differential hierarchy and additional grading of knot polynomials,” Theor. Math. Phys., 179 509–542 (2014); arXiv:1306.5682v1 [hep-th] (2013).
5. J. W. Alexander, “Topological invariants of knots and links,” Trans. Amer. Math. Soc., 30, 275–306 (1928); V. F. R. Jones, “Index for subfactors,” Invent. Math., 72, 1–25 (1983); “A polynomial invariant for knots via von Neumann algebras,” Bull. Amer. Math. Soc., n.s., 12, 103–111 (1985); “Hecke algebra representations of braid groups and link polynomials,” Ann. Math., 126, 335–388 (1987); L. H. Kauffman, “State models and the Jones polynomial,” Topology, 26, 395–407 (1987); P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, “A new polynomial invariant of knots and links,” Bull. Amer. Math. Soc., n.s., 12, 239–246 (1985); J. H. Przytycki and K. P. Traczyk, “Invariants of links of Conway type,” Kobe J. Math., 4, 115–139 (1987); A. Yu. Morozov, ““Are there $$p$$-adic knot invariants?” Theor. Math. Phys., 187, 447–454 (2016); arXiv:1509.04928v2 [hep-th] (2015).
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Towards tangle calculus for Khovanov polynomials;Nuclear Physics B;2024-01
2. Defect and degree of the Alexander polynomial;The European Physical Journal C;2022-11-14
3. Differential expansion for antiparallel triple pretzels: the way the factorization is deformed;The European Physical Journal C;2022-10-14
4. Evolution properties of the knot’s defect;The European Physical Journal C;2022-09-05
5. Implications for colored HOMFLY polynomials from explicit formulas for group-theoretical structure;Nuclear Physics B;2022-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3