The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions: the Riemann–Hilbert problem and soliton classification
-
Published:2024-04
Issue:1
Volume:219
Page:598-628
-
ISSN:0040-5779
-
Container-title:Theoretical and Mathematical Physics
-
language:en
-
Short-container-title:Theor Math Phys
Publisher
Pleiades Publishing Ltd
Reference41 articles.
1. R. M. Miura, “Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation,” J. Math. Phys., 9, 1202–1204 (1968).
2. E. A. Ralph and L. Pratt, “Predicting eddy detachment for an equivalent barotropic thin jet,” J. Nonlinear Sci., 4, 355–374 (1994).
3. H. Ono, “Soliton fission in anharmonic lattices with reflectionless inhomogeneity,” J. Phys. Soc. Japan, 61, 4336–4343 (1992).
4. A. H. Khater, O. H. El-Kalaawy, and D. K. Callebaut, “Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron-positron plasma,” Phys. Scr., 58, 545–548 (1998).
5. G. Q. Zhang and Z. Y. Yan, “Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions,” Phys. D, 410, 132521, 22 pp. (2020).