Author:
Kulkarni G.,Slavnov N. A.
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference40 articles.
1. E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantum inverse problem method. I,” Theoret. and Math. Phys., 40, 688–706 (1979).
2. L. A. Takhtadzhyan and L. D. Faddeev, “The quantum method of the inverse problem and the Heisenberg $$XYZ$$ model,” Russian Math. Surveys, 34, 11–68 (1979).
3. L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models,” in: Symmétries quantiques [Quantum Symmetries] (Proceedings of the Les Houches Summer School, Session LXIV, Les Houches, France, August 1 – September 8, 1995, A. Connes, K. Gawedzki, and J. Zinn-Justin, eds.), North-Holland, Amsterdam (1998), pp. 149–219; arXiv: hep-th/9605187.
4. A. G. Izergin and V. E. Korepin, “The quantum inverse scattering method approach to correlation functions,” Commun. Math. Phys., 94, 67–92 (1984).
5. V. E. Korepin, “Dual field formulation of quantum integrable models,” Commun. Math. Phys., 113, 177–190 (1987).