1. V. L. Chernyshev and A. A. Tolchennikov, “Polynomial approximation for the number of all possible endpoints of a random walk on a metric graph,” Electron. Notes Discrete Math., 70, 31–35 (2018).
2. G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs (Math. Surv. Monogr., Vol. 186), Amer. Math. Soc., Providence, R. I. (2013).
3. L. Lovász, “Random walks on graphs: A survey,” in: Combinatorics, Paul Erdős is Eighty, Vol. 2 (P. Erdős, ed.), J’anos Bolyai Mathematical Society, Budapest (1993), pp. 1–46.
4. V. L. Chernyshev and A. I. Shafarevich, “Statistics of Gaussian packets on metric and decorated graphs,” Philos. Trans. R. Soc. London Ser. A, 372, 20130145 (2014).
5. V. L. Chernyshev and A. A. Tolchennikov, “Correction to the leading term of asymptotics in the problem of counting the number of points moving on a metric tree,” Russ. J. Math. Phys., 24, 290–298 (2017).