Closure Lemmas for Interval Translation Mappings
-
Published:2024-03
Issue:1
Volume:57
Page:72-76
-
ISSN:1063-4541
-
Container-title:Vestnik St. Petersburg University, Mathematics
-
language:en
-
Short-container-title:Vestnik St.Petersb. Univ.Math.
Author:
Krivovicheva A. D.
Publisher
Pleiades Publishing Ltd
Reference11 articles.
1. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ. Press, Cambridge, 1997).
2. M. Boshernitzan and I. Kornfeld, “Interval translation maps,” Ergodic Theory Dyn. Syst. 15, 821–832 (1995). https://doi.org/10.1017/S0143385700009652
3. J. Schmeling and S. Troubetzkoy, “Interval translation mappings,” in Proc. Dynamical Systems: From Crystal to Chaos, Luminy-Marseille, July 6–10, 1998 (World Scientific, Singapore, 2000), pp. 291–302. https://doi.org/10.1142/9789812793829_0027
4. Artigiani, M., C. Fougeron, P. Hubert, and A. Skripchenko, “A note on double rotations of infinite type,” Trans. Mosc. Math. Soc. 82, 157–172 (2021). https://doi.org/10.48550/arXiv.2102.11803
5. H. Bruin and S. Troubetzkoy, “The Gauss map on a class of interval translation mappings,” Isr. J. Math. 137, 125–148 (2007). https://doi.org/10.48550/arXiv.math/0211351