1. Taylor, G.I., The use of flat-ended projectiles for determining dynamic yield stress, Proc. R. Soc. London, Ser. A, 1948, vol. 3, pp. 289–301. https://doi.org/10.1098/rspa.1948.0081
2. Bragov, A.M., Konstantinov, A.Yu., and Lomunov, A.K., Eksperimental’no-teoreticheskoe issledovanie protsessov vysokoskorostnogo deformirovaniya i razrusheniya materialov razlichnoy fizicheskoi prirody s ispol’zovaniem metoda Kol’skogo i ego modifikatsii (Experimental and Theoretical Study of the Processes of High-Speed Deformation and Fracture of Materials of Various Physical Nature Using the Kolsky Method and Its Modifications), Nizh. Novgorod: NNGU im. N.I. Lobachevskogo, 2018.
3. Sen, S., Banerjee, B., and Shaw, A., Taylor impact test revisited: Determination of plasticity parameters for metals at high strain rate, Int. J. Solid Struct., 2020, vol. 193–194, pp. 357–374. https://doi.org/10.1016/j.ijsolstr.2020.02.020
4. Bogomolov, A.I., Gorel’skii, V.A., Zelepugin, S.A., and Khorev, I.E., Behavior of bodies of revolution in dynamic contact with a rigid wall, J. Appl. Mech. Tech. Phys., 1986, vol. 27, pp. 149–152. https://doi.org/10.1007/BF00911139
5. Chandola, N., Revil-Baudard, B., and Cazacu, O., Plastic deformation of high-purity α-titanium: Model development and validation using the Taylor cylinder impact test, J. Phys.: Conf. Ser., 2016, vol. 734, p. 032048. https://doi.org/10.1088/1742-6596/734/3/032048