Evaluation of the Inter-frequency Correlation of New Zealand CyberShake Crustal Earthquake Simulations

Author:

Bayless Jeff,Condon Scott

Abstract

The inter-frequency correlation of ground-motion residuals is related to the width of peaks and troughs in the ground-motion spectra (either response spectra or Fourier amplitude spectra; FAS) and is therefore an essential component of ground-motion simulations for representing the variability of structural response. As such, this component of the simulations requires evaluation and validation when the intended application is seismic fragility and seismic risk. This article evaluates the CyberShake NZ [1] crustal earthquake ground-motion simulations for their inter-frequency correlation, including comparisons with an empirical model developed from a global catalogue of shallow crustal earthquakes in active tectonic regions, and with results from similar simulations (SCEC CyberShake; [2]). Compared with the empirical model, the CyberShake NZ simulations have a satisfactory level of total inter-frequency correlation between the frequencies 0.1 – 0.25 Hz. At frequencies above 0.25 Hz, the simulations have lower (statistically significant at 95% confidence level) total inter-frequency correlation than the empirical model and therefore require calibration. To calibrate the total correlation, it is useful to focus on the correlation of the residual components. The between-event residual correlations, physically related to source effects (e.g., stress drop) which drive ground motions over a broad frequency range, are low at frequencies greater than about 0.25 Hz. Modifications to the cross-correlation between source parameters in the kinematic rupture generator can improve the inter-frequency correlations in this range [3]. The between-site residual correlations, which represents the correlation between frequencies of the systematic site amplification deviations, are larger (statistically significant at 95% confidence level) than the empirical model for frequencies less than about 0.5 Hz. We postulate that this relates to the relative simplicity of site amplification methods in the simulations, which feature less variability than the amplification observed in the data. Additional insight would be gained from future evaluations accounting for repeatable path and basin effects, using simulations with refined or alternative seismic velocity models, and using simulations with a higher crossover frequency to deterministic methods (e.g., 1 Hz or higher).

Publisher

New Zealand Society for Earthquake Engineering

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3