Vulnerability and seismic risk assessment of buildings following the 1989 Newcastle, Australia earthquake

Author:

Chandler A. M.,Pappin J. W.,Coburn A. W.

Abstract

Ten days after the Newcastle, Australia earthquake of 28 December, 1989, the UK-based Earthquake Engineering Field Investigation Team (EEFIT) mounted a five day mission to the affected area. This paper presents the findings of the EEFIT investigation and subsequent follow up studies in relation to the extent of building damage and its distribution within the City of Newcastle and the surrounding urban area. Results are based on both detailed street surveys and general damage surveys, the former carried out in two areas, namely the heavily damaged suburban district of Hamilton (3km west of the city centre) and the Newcastle central business district. The findings of these surveys have provided valuable information on the vulnerability of building stock of types common to other parts of Australia, the UK and elsewhere, and hence form an important database for the accurate assessment of seismic risk to buildings in regions of low seismicity. This information will assist the development of realistic, economical seismic code provisions for building design and construction in low-risk areas. An important feature arising from the surveys and subsequent analytical studies of site response in the heavily damaged districts within the Hunter River alluvial basin is that, contrary to reports published by the Institution of Engineers, Australia amongst others, the areas of deep alluvial soil and fill do not correlate strongly with the more heavily damaged districts determined from post-earthquake assessments. Hence, suggestions that this form of site soil amplification effect played a major part in the distribution and extent of heavy damage in this earthquake are somewhat misleading for the future development of planning and design regulations. Furthermore, the results of site response analyses show that it is more likely to be the shallower soils near the border of the alluvial basin which tend to amplify bedrock ground motions generated by this type of earthquake.

Publisher

New Zealand Society for Earthquake Engineering

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3