Recent studies of historical earthquake-induced landsliding, ground damage, and MM intensity in New Zealand

Author:

Hancox G. T.,Perrin N. D.,Dellow G.D.

Abstract

A study of landsliding caused by 22 historical earthquakes in New Zealand was completed at the end of 1997. The main aims of that study were to: (a) study the nature and extent of landsliding and other ground damage (sand boils, subsidence and lateral spreading due to soil liquefaction) caused by historical earthquakes; (b) determine relationships between landslide distribution and earthquake magnitude, epicentre, isoseismals, faulting, geology and topography; and (c) establish improved environmental response criteria and ground classes for assigning MM intensities and seismic hazard assessments in New Zealand. Relationships developed from the study indicate that the minimum magnitude for earthquake-induced landsliding (EIL) in N.Z. is about M 5, with significant landsliding occurring at M 6 or greater. The minimum MM intensity for landsliding is MM6, while the most common intensities for significant landsliding are MM7-8. The intensity threshold for soil liquefaction in New Zealand was found to be MM7 for sand boils, and MMS for lateral spreading, although such effects may also occur at one intensity level lower in highly susceptible materials. The minimum magnitude for liquefaction phenomena in N.Z. is about M 6, compared to M 5 overseas where highly susceptible soils are probably more widespread. Revised environmental response criteria (landsliding, subsidence, liquefaction-induced sand boils and lateral spreading) have also been established for the New Zealand MM Intensity Scale, and provisional landslide susceptibility Ground Classes developed for assigning MM intensities in areas where there are few buildings. Other new data presented include recent earthquake studies (e.g., Murchison 1929), a preliminary landslide size/frequency distribution for earthquakes over the last 150 years, and a preliminary EIL Opportunity and hazard model for New Zealand. Implications for earthquake-induced landsliding for seismic hazard assessments in New Zealand are briefly discussed. Suggestions are also made for future EIL research, including further studies of historical earthquakes, and large prehistoric landslides in the central Southern Alps, northwest Nelson, and Fiordland, to help determine past and future earthquake activity and hazard from active faults in those regions.

Publisher

New Zealand Society for Earthquake Engineering

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A universal size classification system for landslides;Landslides;2023-09-29

2. The New Zealand landslide dam database, v1.0;Landslides;2023-09-25

3. Coastal earthquake-induced landslide susceptibility during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand;Natural Hazards and Earth System Sciences;2023-09-07

4. Earthquake contributions to coastal cliff retreat;Earth Surface Dynamics;2023-08-09

5. Earthquake-induced landslides in Norway;Natural Hazards and Earth System Sciences;2023-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3