Customising semi-active resetable device behaviour for abating seismic structural response

Author:

Rodgers Geoffrey W.ORCID,Chase J. Geoffrey,Mulligan Kerry J.,Mander John B.,Elliott Rodney B.

Abstract

Semi-active resetable actuators have been shown to be capable of significantly improving seismic structural response and customising structural hysteresis loops to reduce both displacement and base shear demands. Hence, device behaviour and dynamics can be tailored to the application. However, the maximum forces produced, in particular with air as the working fluid, can be a limiting factor to avoid extreme device sizes. This investigation incorporates an actively controlled (stored) high-pressure air source to enhance the capabilities of such resetable devices. The devices are designed using a validated non-linear model incorporating the dynamics and non-linearities of the working fluid, valves, sensor lags and computational limitations. Initial simulations show 100-600% increases in the peak device forces, with 100% obtained when the initial pressure is doubled. In addition, the high pressure source allows greater manipulation of the device behaviour and response. This additional flexibility enables, for example, devices that are more resistant or resist differently in opposing directions. The impact of device enhancements over standard resetable devices is then demonstrated experimentally. This paper extends these novel resetable devices to create more flexible and actively controlled devices for semi-active structural control. Finally, a “net-zero base shear design” concept is presented, where the added damping reaction forces are exactly offset by structural response reductions to give large displacement reductions with no overall change to base shear forces – maximising control with no impact on the foundations.

Publisher

New Zealand Society for Earthquake Engineering

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3