Incremental dynamic analysis of rigid blocks subjected to ground and floor motions and shake table protocol inputs

Author:

D'Angela DaniloORCID,Magliulo GennaroORCID,Cosenza EdoardoORCID

Abstract

This paper reports the results of an extensive campaign of incremental dynamic analyses (IDA) of rigid rocking blocks under various loading histories, including real ground/floor motions and shake table testing protocol loading histories. Several block geometries are investigated considering various size and slenderness combinations representative of building contents, monumental elements, art objects, components of critical facilities, and other unanchored elements. The spectral response of the block to different loading histories is firstly assessed by highlighting the characteristics of the different seismic input sets. Dimensionless acceleration- and velocity-based parameters are considered as intensity measures, and the block rotation normalized considering the critical angle (i.e., dimensionless rocking amplitude) is assumed as an engineering demand parameter. The IDA curves are evaluated, and the dynamic response of the blocks is characterized in terms of: (a) type of loading history, (b) intensity measure, and (c) block geometry. New information and technical insights are presented regarding the assessment of seismic response of structural and nonstructural rocking systems. The dynamic response of the blocks subjected to the investigated protocols is found to be not always compatible with the capacities related to real ground/floor motions, often producing non-conservative estimations. The discrepancy identified between the block responses associated with the protocol inputs and real motions is found to be significantly affected by both block geometry and intensity measure.

Publisher

New Zealand Society for Earthquake Engineering

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3