SEISMIC HAZARD ESTIMATION IN STABLE CONTINENTAL REGIONS: DOES PSHA MEET THE NEEDS FOR MODERN ENGINEERING DESIGN IN AUSTRALIA?

Author:

Allen Trevor I.

Abstract

Damaging earthquakes in Australia and other regions characterised by low seismicity are considered low probability but high consequence events. Uncertainties in modelling earthquake occurrence rates and ground motions for damaging earthquakes in these regions pose unique challenges to forecasting seismic hazard, including the use of this information as a reliable benchmark to improve seismic safety within our communities. Key challenges for assessing seismic hazards in these regions are explored, including: the completeness and continuity of earthquake catalogues; the identification and characterisation of neotectonic faults; the difficulties in characterising earthquake ground motions; the uncertainties in earthquake source modelling, and; the use of modern earthquake hazard information to support the development of future building provisions. Geoscience Australia recently released its 2018 National Seismic Hazard Assessment (NSHA18). Results from the NSHA18 indicate significantly lower seismic hazard across almost all Australian localities at the 1/500 annual exceedance probability level relative to the factors adopted for the current Australian Standard AS1170.4–2007 (R2018). These new hazard estimates have challenged notions of seismic hazard in Australia in terms of the recurrence of damaging ground motions. This raises the question of whether current practices in probabilistic seismic hazard analysis (PSHA) deliver the outcomes required to protect communities and infrastructure assets in low-seismicity regions, such as Australia. This manuscript explores a range of measures that could be undertaken to update and modernise the Australian earthquake loading standard, in the context of these modern seismic hazard estimates, including the use of alternate ground-motion exceedance probabilities for assigning seismic demands for ordinary-use structures. The estimation of seismic hazard at any location is an uncertain science, particularly in low-seismicity regions. However, as our knowledge of the physical characteristics of earthquakes improve, our estimates of the hazard will converge more closely to the actual – but unknowable – (time independent) hazard. Understanding the uncertainties in the estimation of seismic hazard is also of key importance, and new software and approaches allow hazard modellers to better understand and quantify this uncertainty. It is therefore prudent to regularly update the estimates of the seismic demands in our building codes using the best available evidence-based methods and models.

Publisher

New Zealand Society for Earthquake Engineering

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3