1. Adorni, C.Y.K.O, Souza, J.M., Vanine, M.N., & Holanda, G.M. (2019). Modelos de Inteligência Computacional aplicados à previsão de ocorrência de falta (p. ). Presented at the XXV SNPTEE Seminário Nacional de Produção e Transmissão de Energia Elétrica, Belo Horizonte. Retrieved from https://www.xxvsnptee.com.br/
2. Ahmadia, M., Manera, M., & Sadeghzadeh, M. (2019). The investment-uncertainty relationship in the oil and gas industry. Resources Policy, 63. https://doi.org/10.1016/j.resourpol.2019.101439
3. Alves, A.M., & Holanda, G.M. (2016). “Liquid” Methodologies: combining approaches and methods in ICT public policy evaluations. Revista Brasileira de Políticas Públicas e Internacionais, 1(2), 70–90. Retrieved from https://periodicos.ufpb.br/index.php/rppi/article/view/31191
4. Ani, M., Oluyemi, G., Petrovski, A., & Rezaei-Gomari, S. (2016). Reservoir uncertainty analysis: The Trends from Probability to Algorithms and Machine Learning (p. ). Presented at the SPE Intelligent Energy International Conference and Exhibition. https://doi.org/10.2118/181049-MS
5. Bickel, J.E., & Bratvold, R.B. (2008). From uncertainty quantification to decision making in the Oil and Gas industry. Energy Exploration & Exploitation, 26(5), 311–325.