1. Hammami, A, & Mehrotra, A. K. (1995). Liquid-solid-solid thermal behaviour of n-C44H90+ n-C50H102 and n-C25H52+ n-C28H58 paraffinic binary mixtures. Fluid Phase Equilibria, 111(2), 253–272. https://doi.org/10.1016/0378-3812(95)02777-C
2. Huang, Z., Zheng, S., & Fogler, H. S. (2006). Wax deposition: experimental characterizations, theoretical modeling, and field practices. CRC Press. https://books.google.com.br/books?hl=pt-BR&lr=&id=BiqsCQAAQBAJ&oi=fnd&pg=PP1&dq=HUANG,+Zhenyu%3B+ZHENG,+Sheng%3B+FOGLER,+H.+Scott.+Wax+deposition:+experimental+characterizations,+theoretical+modeling,+and+field+practices.+2016.&ots=p6hw9vCl9A&sig=zaxpfznwFyCeGcbJ_LiCHzvKmFE#v=onepage&q=HUANG%2C%20Zhenyu%3B%20ZHENG%2C%20Sheng%3B%20FOGLER%2C%20H.%20Scott.%20Wax%20deposition%3A%20experimental%20characterizations%2C%20theoretical%20modeling%2C%20and%20field%20practices.%202016.&f=false
3. Kasumu, A. S., Arumugam, S., & Mehrotra, A. K. (2012). Effect of cooling rate on the wax precipitation temperature of “waxy” mixtures. Fuels, 103(1), 1144–1147. https://doi.org/10.1016/j.fuel.2012.09.036
4. Kok, M. V., Létoffé, J. M., Claudy, P., Martin, D., Garcin, M., & Volle, J. L. (1996). Comparison of wax appearance temperatures of crude oils by differential scanning calorimetry, thermomicroscopy and viscometry. Fuel, 75(7), 787–790. https://doi.org/10.1016/0016-2361(96)00046-4
5. Kurniawan, M., Subramanian, S., Norrman, J., & Paso, K. (2018). Influence of microcrystalline wax on the properties of model wax-oil gels. Energy & Fuels, 32(5), 5857–5867. https://doi.org/10.1021/acs.energyfuels.8b00774