Author:
Filippin F. A., ,Fasoli H. J.,
Abstract
Electrochemical energy sources are an alternative to replace technology based on the burning of fossil fuels. In an elec-trochemical system the potential drop spreads over a very narrow region at an interphase, creating high electric fields.So, there are good technological reasons to study semiconductor / electrolyte interphases. Currently, one of the ways touse renewable resources is through photovoltaic technology that directly converts solar radiation into electrical energy.This technology is manufactured from semiconductors, generally silicon, following an extremely careful and expensivemanufacturing procedure. An option for photovoltaic devices is photoelectrochemical cells.These cells are made bythe contact of a semiconductor electrode with a solution, which can be easily prepared and offers the possibility oflow-cost manufacturing. Understanding how these devices work requires knowledge of the characteristics of semicon-ductors and how these materials behave in contact with an electrolytic solution and under illumination by sunlight. Thepresent work describes, through an updated review, the principles and applications of semiconductor electrodes as themain components in a photoelectrochemical solar cell (PEC), to carry out chemical reactions of technological interest.In addition, the elements that are required for the improvement in the performance and construction of the PEC are discussed.
Publisher
Asociacion Fisica Argentina
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献