ALD deposited amorphous alumina coatings can slow glass alteration

Author:

Hiebert Miriam E., ,Weaver Jamie,Lam Thomas,Little Nicole,Hyde Ethan,Vicenzi Edward P.,Phaneuf Raymond J., ,

Abstract

Atomic layer deposited (ALD) amorphous aluminium oxide and titanium oxide coatings have been investigated for use in reducing the rate of silicate glass alteration. Mass spectrometric analysis of leachate from elevated temperature aqueous immersion alteration experiments showed a marked decrease in the concentration of released Na and Si from the glass when the vitrified material was ALD coated as compared to uncoated glass. This decrease is consistent with the proposed protective effect of the ALD coating. Additionally, visual observations indicate formation of significant amounts of amorphous, secondary phase sediment for immersed, uncoated glass. This sediment was not present in the solution of the ALD coated and altered glass samples. However, the ALD coating did delaminate after protracted immersion, a likely limiting factor of the efficacy of ALD coatings. This limitation may be mitigated through a proposed refinement of the ALD coating procedure.

Publisher

Society of Glass Technology

Subject

Materials Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3